"Duck curve" sheds new light on CSP

The "Duck curve"

A funny new name to highlight a well known problem

Sources of the problem:

- 1. Time shift between solar PV production and load curve
- 2. Huge increase of solar electricity penetration (mainly PV)

The "Duck curve"

CSP Main Plant Types

Parabolic Linear Systems "Parabolic Trough"

- Good conversion efficiency
- Simple sun tracking (single axis)
- Mature technology

Tower Systems "Central Receiver"

Higher temperaturesCentralized systems

Eurelios 1MWe 1981

Joint project by FR,DE,IT Funded by EC

Location: Adrano (Sicily) Central receiver Direct steam generation 1MWe 180 heliostats 6200 m2 0.5 h molten salt storage

First (ever) CSP plant connected to the grid June 1981

CSP development

CSP development

Parabolic Trough CSP with Thermal Energy Storage

CSP Molten salt Tower system with integral TES

Gemasolar plant data:Power:19.9 MWeHeliostats $2650 (120m^2)$ Tower:140 mLand area185 haConcentration1000:1Storage15hmolten salt mass8000 tcapacity factor $\approx 55\%$ 24h operation capabilityCommissioniry:2011

Better performance than PT Higher steam temperature 550°C Higher cycle efficiency 40% Higher storage capacity for the same mass of salt ≈ 2.5x

The Molten Salt PT technology (MSPT)

Traditional PT Technology (Thermal Oil w. storage)

MSPT Integrated Technology Simpler and cheaper system

- Two heat exchangers removed
- Higher conversion efficiency
- Higer operational flexibility
- Smaller storage tanks
- No toxicity
- No flammability
- Lower cost of HTF
- Lower cost of the plant
- Require special receiver tubes

CSP output (including TES)

CSP output (including TES)

Example: Andasol 3 operation 24 h continuous generation trial

Although the plant is designed for 7.5 h storage, uninterrupted operation is possible at reduced output power

CSP recent developments

The most recently commissioned Molten Salt Tower: (Oct. 2019)

Luneng (PRC)

- 50 MWe
- 600000 m²
- 12 h TES
- 160 GWh/y

DNI=1950 kWh/m²/y

The most recent signed project: (Nov 11th. 2019)

MINOS (Crete)

- Molten Salt Tower
- 50MWe
- 5 h TES
- 160 ha DNI=2150 kWh/m²/y

PV module cost evolution

EU-JRC pv_status_report_2018_online.pdf

"Duck curve" in Germany

Clear "Duck curve"

Solar

source: Fraunhofer ISE 2018 Gugliemo Liberati https://www.energy-charts.de/power.htm?source=all-sources&year=2018&week=27 Technology Advisor

Shaping the load Load splitting in Spain

Gugliala Solution: https://demanda.ree.es/visiona/peninsula/demanda/acumulada/2019-08-02 Technology Advisor

Spain grid residual load after PV & CSP removal

Solar resource in Europe

content of the map to benefit yourself and others in creative ways. For more information, please visit http://solargis.com/download.

This map is licensed by Solargis under the Creative Commons Attribution license (CC BY-SA 4.0). You are encouraged to use content of the map to benefit yourself and others in creative ways. For more information, please visit http://solargis.com/download

Possible solutions to reduce "duck curve" effects

	Method	Time frame
•	Increase conventional plant flexibility	MID TERM
•	Enhance grid interconnections	LONG TERM
•	Increase DSM	MID/LONG TERM
•	Increase system storage capabilities	SHORT/MID TERM
•	Use of CSP plant with storage for new additions (where possible)	SHORT TERM

Conventional plant flexibility

CCGT example

Batteries

- efficient system (round trip eff. ≈85%)
- compact, modular systems
- all electronic extremely fast reactive
- standalone operation (no local operator)
- Still expensive ≈300 \$/kWh(*)
- high initial investment
- periodical battery substitution to maintain efficiency
- recycling costs
- possible Lithium shortage ?

Is a PV system + batteries cheaper than CSP ?

Comparison procedure

STEPS:

- Choose a reference CSP plant
- Define an "equivalent" PV+B plant
 - Same yearly electric energy output as CSP reference
 - Same split between on-sun and off-sun energy
 - Same geographical location
- Compute the "equivalent investment" for reference CSP plant and PV+B

CSP vs PV+Battery Comparison

PV1 : on-sun operation onlyPV2 : only for battery charging (off-sun operation)

"Equivalent" means:

Same geographical location Same storage capacity (electrical) Same total annual energy output [MWh] Same off-sun annual energy output [MWh]

Comparison based on on **NPV** of all life-long expenditures:

- Initial investment (incl. EPC)
- O&M
- battery replacement

Plant life:30 y Actualization rate 5% PV and battery system cost source: Lazards: 2018 Levelized cost of storage version 4.0

CSP vs PV+Battery

Results

CSP vs PV+Battery

Results

CSP simulator

Uses TMY files for the specific location Simulates plants with programmable time steps Simulates **PT, Tower, Beam down, PV with and w/o TES** Simulates Steam turbine / ORC power blocks Uses energy price data files to compute plant revenues Computes economic parameters NPV,IRR,LCOE

Performs flexible multivariate programmed simulations with comparison tables and graphs

CSP thermal applications

- Water Desalination
- EOR
- Geothermal enhancement
- Brine crystallization
- Food industry

.

Solar/Geothermal hybrid application

Hybrid Solar / CC Plant

Integrates 10% el. power from solar source

High solar efficiency (41%)

Fossil fuel displaced by solar heat

Shared Steam Turbine (reduced solar investment)

It can include a TES (with a larger solar field) for increased flexibility and dispatch-ability

Example: C/C GE STAG109 FB (410 MWe 57%) PT solar field: 120000 m² Location: Southern Spain (DNI=2200 kWh/m²/y)

Solar assisted brine crystallization

Thermal applications

Potato chips drying (Frit-o-lay) Modesto (CA)

5000 m² 2.4 MWth 250°C HTF: pressurized water

Thank you for the attention